

Fastest Lambda First

Neil Mitchell
www.cs.york.ac.uk/~ndm/λ

The Problem

 Count the number of lines in a file
– “” = 0
– “test” = 1
– “test\n” = 1
– “test\ntest” = 2

 Read from the console
– Using getchar only
– No buffering

The Haskell

main = print . length . lines =<< getContents

 getContents :: IO String
 lines :: String → [String]
 length :: [a] → Int
 print :: Show a ⇒ a → String

The C

int main() {
int count = 0, last_newline = 1, c;
while ((c = getchar()) != EOF) {

if (last_newline) count++;
last_newline = (c == '\n');

}
printf("%i\n", count);
return 0;

} /* Is this correct? */

Thanks to Andrew Wilkinson

The Results

0
1
2
3
4
5
6
7
8
9

10

C Supero GHC

Disclaimer Slide

 Uses GHC as a backend
– GHC does some really cool optimisation
– Inlining, strictness, unboxing

 Only one benchmark presented
– Promising results on others, but not enough yet

Other Benchmarks

 Three results
– wc -c 13% faster GHC, 3% slower C
– wc -l 47% faster GHC, 2% slower C
– wc -w 70% faster GHC, 20% slower C

 All very similar programs…

Overview

 Different approach
 First order code
 First order code without data
 Termination
 What could be improved
 Conclusion

Whole program analysis

 Look at all the code at once
 Done by a few compilers (MLton, JHC)
 Usually compilation is really slow

 Linking is whole-program
 Mine is quite quick

Bullets versus a nuclear bomb

 Most (all?) optimising compilers use “bullets”
– Small, targeted transformations
– Hit programs with a hail of bullets

 I use one single optimisation
– No issues of “enabling transformations”
– No optimisation “dials”
– No “swings and roundabouts”

Alpha Renaming

 Some optimisers rely on special names
– foldr/build
– stream/unstream

 Achieves good practical results
– Limits what can be optimised well
– Requires functions to be defined unnaturally
– They tend to go wrong (take in GHC 6.6)

First Order Haskell

 Remove all lambda abstractions (lambda lift)
 Leaving only partial application/currying

odd = (.) not even

(.) f g x = f (g x)

 Generate templates (specialised fragments)

Oversaturation

f x y z, where arity(f) < 3

main = odd 12

<odd _> x = (.) not even x

main = <odd _> 12

Undersaturation

f x (g y) z, where arity(g) > 1

<odd _> x = (.) not even x

<(.) not even _> x = not (even x)

<odd _> x = <(.) not even _> x

Special Rules

let z = f x y, where arity(f) > 2 (let-under)
– inline z, after sharing x and y

d = Ctor (f x) y, where arity(f) > 1 (ctor-under)
– inline d
– The “dictionary” rule

Standard Rules

 let x = (let y = z in q) in … (let/let)
 case (let x = y in z) of … (case/let)
 case (case x of …) of … (case/case)
 (case x of …) y z (app/case)
 case C x of … (case/ctor)

Removing functions

\x → head xf x

Application Closure

head x

Removing data

x : xscase x of …

Consumption Production

…

Church Encoding

data List a =

 Nil

 | Cons a (List a)

len x = case x of

 Nil → 0

 Cons y ys → 1 + len ys

nil = \n c → n

cons x xs = \n c → c x xs

len x = x

 0

 (\y ys → 1 + len ys)

Efficient Interpretation by Transforming Data
Types and Patterns to Functions, TFP 2006

Optimisation Algorithm

1. Remove higher-order functions

2. Church encode

3. Remove higher-order functions

Proof: It doesn’t work

 A program has no data, and no functions
 Implies its not Turing complete!

 Linear Bounded Turing Machine
 Therefore, removing HO cannot be perfect

Failing Example

showPosInt x = f x “”

f 0 acc = acc

f i acc = f (i / 10) (c:acc)

 where c = ord ‘0’ + (i % 10)

 Requires a buffer O(log10 n)

 Cannot be removed automatically

Failing pleasantly

 Keep running
 At some point, stop

– 1000 new functions created
– 100 based on a particular function
– Some particular name recurring

 Leaves higher-order functions around

Failing Church Encoding

 Church encoding requires rank-2 types
– Cannot be inferred automatically
– Makes some things more complex

 Why not merely “pretend” Church Encode
– Failure is now left-over data
– Much more pleasant

Thanks to Tom Shackell

Pretend we are Church encoding

Summing the Integers

main n = sum (range 0 n)

sum xs = case xs of

[] → 0

(y:ys) → y + sum ys

range i n = if i > n then [] else i : range (i+1) n

Undersaturation of Data

 A constructor is higher-order

main n = sum (range 0 n)

<sum (range#2)> i n = case range i n of …

main n = <sum (range#2)> 0 n

Oversaturation of Data

 A case is an application

case range i n of {[] → 0; (y:ys) → y + sum ys}

<case range#2 {[] → 0; (y:ys) → y+sum ys}> i n =

 if i > n then 0 else i + sum (range (i+1) n)

Final Result

main n = sum’ 0 n

sum’ i n = range’ i n

range’ i n = if i > n then 0 else i + sum’ (i+1) n

 All constructors have disappeared
 First-order with Church encoding

Special Cases

let x = C y z
– inline x, after sharing y and z

let x = f y z, where f produces data
– inlining may break sharing
– only if one use of x

What isn’t Optimised?

 This optimisation does a lot
 But doesn’t always produce optimal code

 What can we do better?
– Ignore “better algorithms”

Call overhead

f1 x y = f2 x y

f2 x y = f3 y x

f3 y x = g x + y

 My optimisation gives loads of these!

GHC is very good at this

Strictness/Boxing

 Lazy evaluation requires “thunks”
 Strictness avoids these thunks

 Int is box stored in the heap
 Int# is more like a C int

Again, GHC is good at this

Sharing/lets

g (f x) (f x) ⇒ let y = f x in g y y
 Common sub expression

map (g 100) ys

g x y = f x + y
 Strength reduction

Can cause space leaks

Constant movement

countLines xs = count ‘\n’ xs

count n (x:xs) | n == x = 1 + count xs

| otherwise = count n xs

 This one remains in linecount example
 Should make the Haskell faster

Can Haskell beat C?

 A question of abstraction
– In C, abstraction is painful
– For linecount, not worth it

 Haskell can remove abstraction better than C
– Won’t win on micro-benchmarks (may draw)
– May win on real programs

Faster than C

print . sum . map readInt . lines =<< getContents

readInt :: Int → String

 Haskell can optimise sum/readInt
 C can’t optimise between them

 NB. Not actually tried, yet…

http://shootout.alioth.debian.org/

More Benchmarks

 Needs refactoring
– Some transformations in Yhc.Core
– Some in the optimiser
– Don’t glue together nicely

 GHC sometimes “over-optimises”
– Turns getchar into a constant!
– Need to integrate with GHC’s IO Monad

Conclusion

 Haskell can be made faster
– Nearly the speed of C (sometimes)
– But always more beautiful

 You can’t draw conclusions from small
benchmarks

