

Transformation and Analysis
of Haskell Source Code

Neil Mitchell
www.cs.york.ac.uk/~ndm

λ
⊥

Why Haskell?

• Functional programming language
 Short, beautiful programs

• Referential transparency
 Easier to reason about and manipulate

• Lazy
 Beta-reduction holds
 Can inline easily

Goals

• Transform
 Make transformations concise

• Optimise
 Make programs execute faster

• Analyse
 Generate proofs of safety
 Pinpoint unsafe aspects

⊥

Haskell Source

data Core = Core [Data] [Func]
data Func = Func Name [Args] Expr
data Expr = Let [(Name,Expr)] Expr
 | App Expr [Expr]
 | Case Expr [(Expr,Expr)]
 | Var Name
 | Fun Name
 | Con Name
 | -- lots more

Find all functions

f :: Expr → [String]
f (Let x y) = concatMap (f.snd) x ++ f y

f (App x y) = f x ++ concatMap f y

f (Case x y) = f x ++

 concatMap f [[a,b] | (a,b) <- y]

f (Fun x) = [x]

-- lots more cases

Removing Boilerplate

uniplate x = [x | Fun x <- universe x]

syb x = everything (++) ([] `mkQ` getFun)

 where getFun (Fun x) = [x]

 getFun _ = []

compos :: Tree c -> [Name]

compos (Fun x) = [x]

compos x = composOpFold [] (++) compos x

Generic Traversals

• Reduce the quantity of code

• Make programs more readable
• Make code more robust

My extra goal:

• Use Haskell 98 (no scary types)

Fewer Extensions

• Uniplate (GHC, Yhc, nhc, Hugs – H98)
 Advanced features require Hugs/GHC – H’

• SYB (GHC 6.4+ only)
 Requires rank-2 types
 Data instances in the compiler

• Compos (GHC 6.6+ only)
 Rank-2 types
 GADT’s (very unportable)

Central Idea

class Uniplate a where

 uniplate :: a → ([a], [a] → a)
 uniplate x = (get,set)

• Children
 maximal contained items of the same type
 Get the children
 Set a new set of children

Traversals

• Queries
 Extract information out
 Already seen an example

• Transformations
 Create a modified value
 Some change

Removing Let’s

• The operation
removeLet (Let bind x) = Just $

 substitute bind x

removeLet _ = Nothing

• The transformation
removeAllLet = rewrite removeLet

Concise and Fast

0

50

100

150

200

250

300

350

400

Conciseness
0

1

2

3

4

5

6

7

8

Performance

Compos Uniplate SYB

Uniplate in the World

• My uses
 Optimiser, Analyser
 Hoogle (Haskell search engine)
 Dr Haskell (Haskell tutorial tool)

• Matt Naylor’s uses (see next)
 Reach, Reduceron

• Several other projects
 Configurations, QHC, Javascript generator…

Optimisation

• Goal
 Haskell code should be as fast a C
 Code should remain high-level

• Central idea
 Remove overhead
 Remove intermediate steps

Intermediate Steps

• Eliminate values (data/functions)
 length [1..n]
 not (not x)

INPUT OUTPUT

The Method

• Remove higher order functions
1. Either: using specialise/inline rule
2. Or: using over/under staturation rules

• Convert data to functions
 Church encoding

• Remove higher order functions

• Leaves little data or functions

First Order Haskell

• Remove lambda abstractions (lambda lift)

• Leaving only partial application/currying

odd = (.) not even

(.) f g x = f (g x)

• Generate templates (specialised bits)

Oversaturation

f x y z, where arity(f) < 3

main = odd 12

<odd _> x = (.) not even x

main = <odd _> 12

Undersaturation

f x (g y) z, where arity(g) > 1

<odd _> x = (.) not even x

<(.) not even _> x = not (even x)

<odd _> x = <(.) not even _> x

Special Rules

let z = f x y, where arity(f) > 2
 (let-under) rule
 inline z, after sharing x and y

d = Ctor (f x) y, where arity(f) > 1
 (ctor-under) rule
 inline d
 The “dictionary” rule

Standard Rules

let x = (let y=z in q) in … let/let

case (let x=y in z) of … case/let

case (case x of …) of …
case/case

(case x of …) y z app/case

case C x of … case/ctor

Church Encoding

data List a =

 Nil

 | Cons a (List a)

len x = case x of

 Nil → 0
 Cons y ys →
 1 + len ys

nil = \n c → n
cons x y = \n c → c x y

len x = x

 0

 (\y ys →
 1 + len ys)

The Preliminary Results

0

2

4

6

8

10

12

14

16

Char
Count

Line
Count

Word
Count

C

Supero

GHC

Future Work

• Refactoring
 Requires extensible transformations
 Needs to integrate with GHC’s IO Monad

• More Benchmarks

• Proofs
 Correctness
 Laziness/strictness preserving
 Termination

Analysis: Pattern matching

• Haskell programs may crash at runtime
 Pattern-match errors are quite common

head “neil” = ‘n’

head [] = ⊥

• Can get very complex

⊥

The Goal

• Statically prove the absence of pattern-
match errors
 Be conservative
 Generate a “proof” of safety

• Entirely automatic
 No annotations

• Practical
 Catch tool has been released

⊥

A Pattern-Match Error

• In Haskell you match a value with a set of
patterns
 Patterns do not have to be exhaustive

• A “default” pattern is inserted, calling
error

• Analysis:
 Can the error case be reached?
 What are the preconditions on functions?

⊥

Preconditions

• Calculate a precondition on the input
 Sufficient to ensure the output is never ⊥

⊥

INPUT OUTPUT

⊥

Properties

• Calculate a precondition on the input
 Sufficient to ensure a particular output

INPUT OUTPUT

⊥

Automatic inference

• Can automatically infer the properties
and preconditions
 Precondition of error is False
 Precondition of an expression can be

expressed as preconditions of its parts
 Properties are used for calculating

preconditions on function results

⊥

Constraints

• All based on the partitioning of a function
 Constraints on values are used

• BP constraints – list of patterns

• RE constraints – use regular expressions

• MP constraints – clever list of patterns
 Used in Catch

⊥

MP Constraints

• Haskell has recursive data structures
data List α = Nil | Cons α (List α)

• MP is: non-recursive ♦ recursive
 Non-recursive represents top-level values
 Recursive represents all other values

(Cons _ *) ♦ (Cons _ * | Nil)

⊥

MP Examples

(Cons _ *) ♦ (Cons _ * | Nil)
 Non-empty list

(Cons True *) ♦ (Cons True *)
 Infinite list of True

True ♦ _
 The value True

(Zero | One | Pos) ♦ _
 A natural number

⊥

Key MP Property

• Any proposition on MP constraints of one
variable is equivalent to one MP
constraint

(True ♦ _) ∨ (False ♦ _) = (_ ♦ _)
 Works in all cases

• Results in simplification, and fast analysis

⊥

A real-world program

• XMonad: An window manager for X
 Lots of low-level details
 A single pure core module “StackSet”
 No special annotations

• Running Catch:

⊥

$ catch StackSet.hs --quiet
Checking StackSet
14 error calls found
All proven safe

One XMonad sample

views n

 | n < 1 = …

 | otherwise = h : g t

 where (h:t) = [f i | i ← [1..n]]

• This is safe for Int, Integer

• Not safe for all numeric types

⊥

Analysis Times

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000

Lines of Code

Secs

⊥

Catch in the Real World

• XMonad was proven safe
 Developers have started using it as standard

• FilePath library checked

• FiniteMap library checked

• HsColour program checked
 Found 3 previously unknown, genuine bugs

⊥

Conclusions

• Transform: Uniplate
 Concise and fast code
 Without scary types (beginner friendly)

• Optimise: Supero
 Fast code, with reasonable compile times

• Analyse: Catch
 Can automatically check real world programs
 Can find genuine bugs

⊥

