
Solving an old problem:
How do we get a stack trace in a lazy

functional language?

Simon Marlow

Motivation

General problem

ÅMaintaining a link between the original source
code and the final executable code

ïIn such a way that we can still optimise

ïImportant for profiling: not much point in profiling
an unoptimised program

ïImportant (but a bit less so) for debugging

Stack traces

ÅA stack trace is a great point in the design
space

ïAbstraction of execution that is

Åcheap to maintain (sometimes even free)

ÅƎƛǾŜǎ ƎǊŜŀǘ ƛƴǎƛƎƘǘ ŦƻǊ ŘŜōǳƎƎƛƴƎΥ άƘƻǿ ŘƛŘ L ƎŜǘ ƘŜǊŜΚέ

Åis ideal for profiling too:
ïdivides up the profile as a tree

ïallows aggregation both bottom-ǳǇΣ ŀƴŘ ŀŎǊƻǎǎ ǘƘŜ ǘǊŜŜΥ άŦƛƴŘ
ǘƘŜ ǘƻǘŀƭ Ŏƻǎǘ ƻŦ ŀƭƭ Ŏŀƭƭǎ ǘƻ ƳŀǇ ŀƴŘ ǘƘŜƛǊ ŎƘƛƭŘǊŜƴέ

But.. lazy evaluation?

ÅLƴ IŀǎƪŜƭƭ ǿŜΩǊŜ ŜƴǾƛƻǳǎ ƻŦ ǎǘǊƛŎǘ ƭŀƴƎǳŀƎŜǎ ŦƻǊ ǘƘŜƛǊ Ŝŀǎȅ
access to stack traces
ïand nothing else J
ïIn Python, Erlang, etc. every exception prints out the stack trace

by default
ÅȊŜǊƻ ŜŦŦƻǊǘ ōȅ ǘƘŜ ǇǊƻƎǊŀƳƳŜǊΣ άŀƭǿŀȅǎ ƻƴέ
Å9ǾŜƴ ƛŦ ȅƻǳΩǊŜ Ƨǳǎǘ ŀ ǾƛǎƛǘƻǊ ǘƻ ŀ ǿŜō ǎƛǘŜ ǿǊƛǘǘŜƴ ƛƴ ǘƘŀǘ ƭŀƴƎǳŀƎŜ

ÅClaim:
ïthe stack traces you get for free in a strict functional language

are not useful enough
Åinterference from tail calls
Åfunctional abstractions lead to strange results

ïSo in practice you want some explicitly-managed stack trace
anyway

More motivation

ÅIn GHC we had (at least) three users for this
functionality:
ïProfiling

ïDebugging (in GHCi)

ïCoverage analysis

ïόƳŀȅōŜύ Cƭŀǘ ǇǊƻŦƛƭƛƴƎΥ άǿƘŜǊŜ ƛǎ ǘƘŜ ǇǊƻƎǊŀƳ ŎƻǳƴǘŜǊΚέ

ÅWe had two forms of Core annotation
ïone for profiling (SCC)

ïone used by Coverage and the debugger (Tick), but it was
wrong in the case of the debugger

ÅGoal: use a unified infrastructure

Constraints

ÅManageable overhead
ïe.g. 2x for profiling
ïless for flat profiling, more for coverage
ïresults consistent with optimised compilation ς i.e.
ǘƘŜ ǇǊƻŦƛƭŜ Ƙŀǎ ǘƘŜ άǎŀƳŜ ǎƘŀǇŜέ

ÅSensible, predictable semantics
ïyou get the stack trace you expect
ïsimple refactorings ŘƻƴΩǘ ƘŀǾŜ ǎǳǊǇǊƛǎƛƴƎ ŜŦŦŜŎǘǎ
ïall the usual Core-to-Core transformations apply and
ŘƻƴΩǘ ƳŜǎǎ ǳǇ ǘƘŜ ǊŜǎǳƭǘǎ

ÅIdeally: always-on, low usage barrier

A source-language annotation

ÅάǇǳǎƘ ƭŀōŜƭ [ƻƴ ǘƘŜ ǎǘŀŎƪ ǿƘƛƭŜ ŜǾŀƭǳŀǘƛƴƎ 9έ
Å (precise semantics later)
ÅMain point: this is a construct of the source language and the

intermediate language (Core)
Å Compiler can add these automatically, or the user can add them
ÅWe get to choose how detailed we want to be:
ïexported functions only
ï top-level functions only
ïall functions (good for profiling)
ïcall sites (good for debugging)
ïall sub-expressions (fine-grained debugging or profiling)

Å Similar to SCC in GHC now

push L E

Another annotation

Åά/ƻǳƴǘ ŜǾŀƭǳŀǘƛƻƴǎ ƻŦ 9Τ ŀǎǎƛƎƴ ǘƘŜ ǊŜǎǳƭǘ ǘƻ
ƭŀōŜƭ [έ

ïfor coverage, we will use tick exclusively.

ïfor debugging and space profiling, just use push.

ïfor time profiling, we often want to count entries
too, so we can use both push and tick, with "tick L
E" meaning 'bump the count of L pushed on the
current stack".

tick L E

Why separate tick and push?

ÅThey have different semantics, and therefore
support different transformations.

Semantics of tick

ÅA valid transformation is one that maintains
the counts.

ὅὸὭὧὯ ὒ Ὁ ὅὉ

Tick is friendly to the optimiser

ÅLŦ ǿŜΩǊŜ ŘŜŦƛƴƛǘŜƭȅ ƎƻƛƴƎ ǘƻ ǘƛŎƪ [ƭŀǘŜǊΣ ǿŜ Ŏŀƴ Řƻ
it now.

ÅAllows the optimiser to bring together

subexpressions for
ïbeta-reduction
ïcase-of-known-constructor

(tick L f) x
 - > tick L (f x)

case tick L E of { .. }
 - > tick L (case E of { .. })

But tick is difficult to get rid of

ÅCannot reduce tick L x

ÅCannot do anything with \x. tick L \y. E

ÅUnlike push, tick άǎǘƛŎƪǎέ ŀƴŘ Ŏŀƴƴƻǘ ōŜ
completely optimised away, even if it
surrounds code with zero cost.
ïAnother reason to separate tick from pushΥ ŘƻƴΩǘ

use tick ƛŦ ȅƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƻ

ï²Ŝ ŀŘŘŜŘ ŀƴ ƻǇǘƛƻƴ ǘƻ DI/Ωǎ ǇǊƻŦƛƭŜǊ ǘƻ ǎǿƛǘŎƘ ƻŦŦ
tick

Changing the number of evals

ÅDoes GHC ever change the number of times
an expression is evaluated, compared to the
standard lazy semantics?

ï0 -> 1

ï1 -> many

ïmany -> 1

ï1 -> 0 (oh no!)

0-> 1 and 1 -> many

ÅCost must be bounded & small

Åeta expansion is often beneficial

ÅŎƻǎǘ ƻŦ ŘƻƛƴƎ άŀ ҌІ ōέ ƛǎ ŦŀǊ ƭŜǎǎ ǘƘŀƴ ōǳƛƭŘƛƴƎ ǘƘŜ
ŎƭƻǎǳǊŜ ŦƻǊ ά\ȅΦ ŎŀǎŜ ΦΦέ ŀƴŘ ŀǇǇƭȅƛƴƎ ƛǘΦ

Å.ǳǘ ƛŦ ǘƘŜǊŜΩǎ ŀ ǘƛŎƪ ƛƴ ǘƘŜǊŜΣ ǿŜ Ŏŀƴƴƻǘ Řƻ ǘƘƛǎ
optimisation because it would change the counts

Å-fno-state-hack!

˂ x. case a +# b of c -> ˂ y. ...
 -> ˂ x . ˂ y . case a +# b of c -> ...

many -> 1

ÅDoes GHC ever reduce the number of evals?
ïyes of course: full laziness

ïWe do not automatically disable full laziness when using ticks:
ÅFL can make a big difference to runtime
Åthe user gets to see how many times the expression was really

evaluated.

ïTradeoff between predictability and being faithful to the real
operational behaviour
ÅRight now: -fno-state-hack ςfno-full-laziness gives predictable results
ÅResults are always correct for zero/non-zero (coverage works)

 ˂x . f x (tick L (fib y))
 - > let z = tick L (fib y) in ˂ x . f x z

tick was straightforward, now for push

ÅάǇǳǎƘ ƭŀōŜƭ [ƻƴ ǘƘŜ ǎǘŀŎƪ ǿƘƛƭŜ ŜǾŀƭǳŀǘƛƴƎ 9έ

Å{ƻ ƭŜǘΩǎ ǿǊƛǘŜ ŀ ǎŜƳŀƴǘƛŎǎ ŦƻǊ ǘƘŀǘ

ÅDefine stacks:

push L E

type Stack = [Label]
push :: Label - > Stack - > Stack
call :: Stack - > Stack - > Stack

stack at the call site
stack of the

function

stack for the call

Executable semantics

 eval :: Stack - > Expr - > E (Stack,Expr)

eval stk (EInt i) = return (stk , EInt i)
eval stk (ELam x e) = return (stk , ELam x e)

eval stk (EPush l e) = eval (push l stk) e

eval stk (ELet (x,e1) e2) = do
 insertHeap x (stk,e1)
 eval stk e2

eval stk (EPlus e1 e2) = do
 (_, EInt x) < - eval stk e1
 (_, EInt y) < - eval stk e2
 tick stk
 return (stk , EInt (x+y))

eval stk (EApp f x) = do
 (lam_stk , ELam y e) < - eval stk f
 eval lam_stk (subst y x e)

current stack

E is a State monad
containing the Heap:
a mapping from Var

to (Stack,Expr)

Values are
straightforward

push L on the
stack, evaluate

the body suspend the
computation e1 on the

heap, capture the
current stack

A side effect, used to
record the value of the

current stack

Application continues
with the stack returned

by evaluating the lambda

Executable semantics (variables)

eval stk (EVar x) = do
 r < - lookupHeap x
 case r of
 (stk ', EInt i) - > return (stk ', EInt i)
 (stk ', ELam y e) - > return (call stk stk õ, ELam y e)

 (stk ',e) - > do
 deleteHeap x
 (stkv , v) < - eval stk ' e
 insertHeap x (stkv,v)
 eval stk (EVar x) IŜǊŜΩǎ ǿƘŜǊŜ ǿŜ ŀǊŜ

άŎŀƭƭƛƴƎέ ŀ ŦǳƴŎǘƛƻƴ

Given this semantics, define push & call

ÅThe problem now is to find suitable definitions
of push and call that

ïBehave like a call stack

ïHave nice properties:

Åtransformation-friendly

Åpredictable/robust

Åimplementable

Aside: cost-centres

ÅThis is a slight generalisation of {ŀƴǎƻƳΩǎ cost-
centre profiling semantics, where

ïstacks have one element

ïpush L S = [L]

ïcall Sapp Slam = Sapp άƭŜȄƛŎŀƭ ǎŎƻǇƛƴƎέ

ïcall Sapp Slam = Slam άŜǾŀƭǳŀǘƛƻƴ ǎŎƻǇƛƴƎέ

ï(Sansom used a hybrid scheme, choosing between
the two alternatives in different situations)

Aside(2): lazy evaluation is not the problem

ÅLazy evaluation is dealt
with by
ïcapturing the current

stack when we suspend a
computation as a thunk
in the heap

ïtemporarily restoring the
stack when the thunk is
evaluated

ÅNothing controversial at
all ς we just need a
mechanism for capturing
and restoring the stack.

eval stk (ELet (x,e1) e2) = do
 insertHeap x (stk,e1)
 eval stk e2

eval stk (EVar x) = do
 r < - lookupHeap x
 case r of
 ...

 (stk ',e) - > do
 deleteHeap x
 (stkv , v) < - eval stk ' e
 insertHeap x (stkv,v)
 eval stk (EVar x)

Aside(3): tail calls

ÅThe semantics says nothing about tail calls ς
there is no call stack, so no way to express the
difference.

ÅAny implementation should respect the
semantics.

Examples

ÅThe heap is initialised with the top-level bindings (give
each the stack <CAF>)
ÅWhen we get to (f y), current stack is <main>
Åf is already evaluated
Åcall <main> <CAF> = <main>
Åeval <main> (push f y+y)
Åeval <main,f> (y+y)
Åat the +, the current stack is <main,f>

f = ˂ x. push òfó x+x

main = ˂ x. push òmainó
 let y = 1 in f y

[ŜǘΩǎ ŀǎǎǳƳŜΣ ŦƻǊ ƴƻǿΣ
call Sapp Slam = Sapp

Use the call-site stack?

ÅPrevious example suggests this might be a
good choice?

ÅAfter all, this gives exactly the call stack you
would get in a strict language

call sapp slam = sapp

But we have to be careful

ÅIf instead of this:

ÅWe wrote this:

Åbƻǿ ƛǘ ŘƻŜǎƴΩǘ ǿƻǊƪ ǎƻ ǿŜƭƭΥ ǘƘŜ άŦέ ƭŀōŜƭ ƛǎ ƭƻǎǘΦ

ÅIn this semantics, the scope of push does not
extend into lambdas

f = ˂ x. push òfó x+x

main = ˂ x. push òmainó
 let y = 1 in f y

f = push òfó (˂ x . x+x)

main = ˂ x. push òmainó
 let y = 1 in f y

Just label all the lambdas?

ÅIdea: make the compiler label all the lambdas
automatically

Åe.g. the compiler inserts a push inside any
lambda:

ÅNow we get a useful stack again: <main,f1>

f = push òfó (˂ x . push òf1ó x+x)

main = ˂ x. push òmainó
 let y = 1 in f y

Properties

ÅThis semantics has some nice properties.

push L x => x

push L (˂ x . e) => ˂ x . e
push L (C x1 .. xn) => C x1 .. xn

l et x = ˂ y . e in push L e'
 => push L (let x = ˂ y . e in e')

push L (let x = e in e')
 => let x = push L e in push L e

O(1) change to cost
attribution, no
change to profile
shape

Note if e is a
value, the push
L will disappear

since the stack
attached to a
lambda is
irrelevant (except
for heap profiling)

Inlining

Å²Ŝ ŜȄǇŜŎǘ ǘƻ ōŜ ŀōƭŜ ǘƻ ǎǳōǎǘƛǘǳǘŜ ŀ ŦǳƴŎǘƛƻƴΩǎ
definition for its name without affecting the
stack. e.g.

Åshould be the same as

Åand indeed it is in this semantics.
ï(inlining functions is crucial for optimisation in GHC)

f = ˂ x . push òf1ó x+x

main = ˂ x. push òmainó
 let y = 1 in f y

main = ˂ x. push òmainó
 let y = 1 in
 (˂ x . push òf1ó x+x) y

More properties

Å!ŘŘƛƴƎ ŀƴ ŜȄǘǊŀ ōƛƴŘƛƴƎ ŘƻŜǎƴΩǘ ŎƘŀƴƎŜ ǘƘŜ
stack

ÅǊŜŎŀƭƭ ΨǇǳǎƘ [Ȅ ҐҐ ȄΩ

Åarguably useful: the stack is robust with
respect to this transformation (by the
compiler or user)

f = push òfó (˂ x . push òf1ó x+x)

g = push ògó f

main = ˂ x. push òmainó
 let y = 1 in g y

But...

Åeta-expansion loses this property

ÅNow the stack at the + will be <main,g,f>

f = push òfó (˂ x . push òf1ó x+x)

g = ˂x . push ògó f x

main = ˂ x. push òmainó
 let y = 1 in g y

Concrete example

ÅWhen we tried this for real, we found that in
functions like

Åh does not appear on the stack, although in

Ånow it does. This is surprising and
undesirable.

h = f . g

h x = (f . g) x

Worse...

Å[ŜǘΩǎ ƳŀƪŜ ŀ ǎǘŀǘŜ ƳƻƴŀŘΥ

newtype M s a = M { unM :: s - > (s,a) }

instance Monad (M s) where
 (M m) >>= k = M $ ˂ s - > case m s of
 (s',a) - > unM (k a) s'
 return a = M $ ˂ s - > (s,a)

errorM :: String - > M s a
errorM s = M $ ˂ _ - > error s

runM :: M s a - > s - > a
runM (M m) s = case m s of (_,a) - > a

Suppose we want the
stack when error is

called, for debugging

