Sciwving an old problem:
How do we get a stack trace In 2 iazy
functional language?

Simon Marlow

Motivation

Simon Marlow - A 2011 - Pu
After bashing my head against this problem on and off for several years, | think | finally understand how to track call stacks properly in a
lazy functional language. If this pans out, we'll get backiraces in GHCI and more accurate profiling.

%1 - Comment - Hang out - Share

£33 COMmments

Gabnel Dus Heis - An upcoming ICFP paper?

Debasmh Ghnah - Please give here a shout in case you decide to document it in a paper or a blog post.
+7

, Manuel Chakravarty - That would be awesome!

Aug 9, 2011 +1

P

AUg J, £U

ﬂ Diavid Leuschner - Great news! We're already looking forward to testing the new profiler! :-)

[ﬁ Thomas Schilling - So, that would only work in GHCI? Will it have a performance impact?

A ; g /__'.'.

General problem

A Maintaining a link between the original source
code and the final executable code
I In such a way that we can sbibtimise
I Important for profiling: not much point in profiling
anunoptimisedprogram

I Important (but a bit less so) for debugging

Stack traces

A A stack trace is a great point in the design
space

I Abstraction of execution that Is

Acheap to maintain (sometimes even free)
AFA@®Sa 3ANBIG AyaAraKad F2N F
Ais ideal for profiling too:

I divides up the profile as a tree

i allows aggregation both bottordzLJ> | YR I ONR & &
GKS Gz2aGFKt Oz2ad 2F Fftf OIFffa

But.. lazy evaluation?

ALY IIa1Stf 6SQNB Sy gdAiAzdza 2
access to stack traces
I and nothing elsd

I In PythonErlang etc. every exception prints out the stack trace
by default

AT SNRP STF2NI o0& GKS LINRPINIF YYSNE |
A9gdSy AT e2dzQNB 2dzald | GA&aAG2NI O
A Claim:

I the stack traces you géor freein a strict functional language
are not useful enough

A interference from tail calls
A functional abstractions lead to strange results

I So In practice you want some explicithanaged stack trace
anyway

More motivation

A In GHC we had (at least) three users for this
functionality:

I Profiling

I Debugging (ilcHC)

I Coverage analysis

PiOYF@80S0 CtFd LINRPFAEAYIY ao
A We had two forms of Core annotation

I one for profiling (SCC)

I one used by Coverage and the debugger (Tick), but it was
wrong in the case of the debugger

A Goal: use a unified infrastructure

Constraints

A Manageable overhead
I e.g. 2x for profiling
I less for flat profiling, more for coverage

I results consistent with gptimised compilati@n.e.
0KS LINPFAES KlIa G4KS aaly

A Sensible, predictable semantics
I you get the stack trace you expect e
i simplerefactoringsR2 Yy Qi K| @S & dzNL1JIN

I all the usual Corgn-Core transformations apply and
R2Yy QO YS&aa dzLJ 4 KS NBadz i

A Ideally: alwaysn, low usage barrier

A sourcelanguage annotation

push L E

AaLldzaK flFroSt [2y UKS ail O]l 6KA
A (precise semantics later)

A Main point: this Is a construct of the source languagethe
Intermediate language (Core)

A Compiler can add these automatically, or the user can add them

A We get to choose how detailed we want to be:

I exported functions only

i top-level functions only

i all functions (good for profiling)

I call sites (good for debugging)

I all subexpressions (fingrained debugging or profiling)
A Similar to SCC in GHC now

Another annotation

AGd/ 2dzy 0 SOl fdzr A2y a 27
t oSt [é
| for coverage, we will useck exclusively.
| for debugging and space profilingst usepush

I for time profiling, we often want to count entries
too, so wecan useboth pushandtick, with "tick L
E" meaning 'bump theount ofL pushed on the

current stack".

Why separate tick and push?

A They have different semantics, and therefore
support different transformations.

Semantics of tick

6[0 QW@ — 6[O]

A A valid transformation is one that maintains
the counts.

Tick Is friendly to the optimiser

ALT 6SQNB RSTAYyAUSte 32
It now.

(tick L f) x
- > tick L (f x)

case tickL E of {.}
- > tick L (case Eof{..

A Allows the optimiser to bring together
subexpressionfor

I beta-reduction
I caseof-known-constructor

But tick Is difficult to get rid of

A Cannot reduceick L x

A Cannot do anything withx. tick L\y. E

AUnlikepushtickG A G A Ol a¢é¢ | YR C
completely optimised away, even If it
surrounds code with zero cost.

I Another reason to separatigck from pushy’ I? 2y
usetick A ¥ e2dz R2y Qu KI @S 1

i2S [RRSR Iy 2LWGA2Yy 02 |
tick

Changing the number @vals

A Does GHC ever change the number of times
an expression Is evaluated, compared to the
standard lazy semantics?

10->1

I 1->many

I many->1

I 1->0 (oh no!)

0->1 and 1> many

A Cost must be bounded & small

A etaexpansion is oftebeneficial
<X. case a +# b of-e<y. ...

-><X .<y.case a+# b of-e ...

AO2&ad 2F R2Ay3 al bl 0¢
Of 2adz2eBp O MISa dde | YR |
A.dzi AT GKSNBQa | UAO]
optimisation because it would change the counts
A -fno-state-hack!

many-> 1

A Does GHC ever reduce the numbeepodl®
I yes of course: full laziness

<x.fx(tick L (fib y))

-> let z = tick L (fib y) in

I We donot automatically disable full laziness when using ticks:
A FL cammake a big difference tountime

A the user gets to see how many times the expression was really
evaluated.

I Tradeoffbetween predictability and being faithful to the real
operational behaviour
A Right now:=-fno-state-hackcfno-full-laziness gives predictable results
A Results are always correct for zero/nero (coverage works)

tick was straightforward, now for push

AdLldzakK flo6St [2y 0K
| S

Vd

Al 2 tS0Qa NRUGS
A Define stacks:

type Stack = [Label]
push :: Label -> Stack - > Stack
call :: Stack -> Stack - > Stack

stack for the call
stack at the call site stack of the
function

Executable semantics

current stack

p—— _—————
eval :: Stack -> Expr ->E (Stack,Expr

s
eval stk (EInt 1) = return (stk ,

eval stk (ELam xe) = return (stk , ELam x € V?"Ues are
straightforward

eval stk (EPush le)= eval (push | stk) e

eval stk (ELet (x,el)e2)=do
insertHeap x (stk,el)

eval stk e2 push L on the W
stack, evaluate

eval stk (EPlus ele2)=do

(, EInt x)< - eval stk el A side effect, used to
(, EInt y)< - eval stk e2 record the value of the

tick stk — ———
return (stk , EInt (x+y)) current stack

eval stk (EApp fx)=do Application continues
(lam stk , ELamye)< - eval stk with the stack returned
eval lam_stk (subst yxe) by evaluating the lambda

Executable semantics (variables)

eval stk (EVar x) = do
r< - lookupHeap x
case r of

(stk ', EInt i) -> return (stk ', EInt i)
(stk ', ELamye) ->return (call stk stk 6, ELam ye)

(stk 'e) -> do
deleteHeap x
(stkv ,v)< - eval stk 'e
insertHeap x (stkv,v)
eval stk (EVar x)

Given this semantics, define push & call

A The problem now is to find suitable definitions
of push and call that

I Behave like a call stack

I Have nice properties:
Atransformationfriendly
Apredictable/robust
Aimplementable

Aside: costentres

A This is a slight generalisation{ofr y & 208tQ &
centre profiling semantics, where
| stacks have one element
I push LS =]L]
i call §p,Sam=Sp, 6 SEAOFE a02LA
icall §,San=%m SO dzl GA2ZY &0
I (Sansonused a hybrid scheme, choosing between

the two alternatives in different situations)

Aside(2): lazy evaluation is not the problem

A Lazy evaluation is dealt pwmmarr=prarspsrye
with by insertHeap x (stk,el)
» ; eval stk e2
| capturing the current

stack when we suspend : EEREINESEEFI I
Computation as dahunk r< - lookupHeap x

) case r of
In the heap
I temporarily restoring the (stk'e) -> do
stack when thehunkis deleteHeap x
evaluated (stkv ,v)< - eval stk 'e
:] insertHeap x (stkv,v)
A Nothing controversial at eval stk (EVar x)

all ¢ we just need a
mechanism for capturing
and restoring the stack.

Aside(3): tall calls

A The semantics says nothing about tail calls
there is no call stack, so no way to express the
difference.

A Any implementation should respect the
semantics.

Examples

f= <x. push O f Ox+x

main= <x. push omaino
let y=1inf y

A The heap is initialised with the tdpvel bindings (give
each the stack <CAF>)

A When we get to (f y), current stack is <main>

A fis already evaluated

A call <main> <CAF> = <mais= [sgQa &3 dzy
A eval<main> (push §+y) - -
A eval<main,t /+y)

A at the +, the current stack iswain,t

Use the caibite stack?

call sapp slam= sapp

A Previous example suggests this might be a
good choice?

A After all, this gives exactly the call stack you
would get In a strict language

But we have to be careful

A If instead of this: f= <x. push of G

main= <x. push omaino
let y=1inf y

A We wrote this:

f= push 0F&¥Yb K+x)

main= <X. push omai no
let y=1inf y

Ab2¢é A0 R2SayQi 62NJ] &z
A In this semanticghe scope of push does not
extend into lambdas

Just label all the lambdas?

A ldea: make the compiler label all the lambdas
automatically

A e.g. the compiler inserts a push inside any
lambda:

f= push o0KX¥ (push xexf)1l6b

main= <X. push omainé
let y=1inf y

A Now we get a useful stack again: <main,f1>

Properties

A This semantics has some nice progigs

since the stack
attached to a
lambda is
irrelevant (except
for heap profiling)

push L x => X
a

push L (<x .e) => <X .e change toprofile
push L (Cx1.. xn) =>C x1 .. shape

let x= <y .einpushlLe
=> push L (letx = <y .eine) Note if e is a
value, the push

push L (letx=ein e L will disappear
=> letx=pushLeinpushLe

Inlining

A2S SELISOG G2 oS ofS
definition for its name without affecting the
stack. e.g.

f= <x .push of 1 &tx

main= <x.push o mai no
lety=1inf y

A should be the same as

main = <x.push o0 mai no

lety =1 in
(<x .push oOf 1&+tx)y

A and indeed it is in this semantics.
I (inliningfunctions is crucial for optimisation in GHC)

More properties

Al RRAY3 Iy SEGN} 0AYRJ
stack

f= push oKX (push xoxf)1l6o

g = push o0go6 f

main= <xXx. push omaino
let y=1in gy

ANBOI £ f WLzaK [E T T E

A arguably useful: the stack is robust with
respect to this transformation (by the
compiler or user)

But...

A eta-expansion loses this property

f= push O0KX¥ (push xexf)1l6o

g= <X. push o0gx© f

main= <xXx. push omaino
let y=1in gy

A Now the stack at the + will bemain,g,f

Concrete example

A When we tried this for real, we found that in
functions like

h=f.g

A h does not appear on the stack, although in

A now it does. This is surprising and
undesirable.

newtype Msa=M({ unM s ->(s,a)}

instance Monad (M s) where
(Mm)>=k=M$ <s ->case ms of
(sha) -> unM (ka)s'
returna=M $ <s ->(sa)

errorM :: String ->Msa Suppose we want the
errorM s=M$ <_ ->errors stack when error is
called, for debugging

runM :Msa ->s ->a
runM (M m) s =case msof(_,a)

