
The Glasgow Haskell Compiler

The Architecture of Open Source Applications, Volume 2 ∗

DRAFT chapter

Simon Marlow Simon Peyton Jones

March 16, 2012

1 Introduction

The Glasgow Haskell Compiler (GHC) started as part of an academic research
project funded by the UK government at the beginning of the 1990’s, with
several goals in mind:

• To make freely available a robust and portable compiler for Haskell that
generates high performance code;

• To provide a modular foundation that other researchers can extend and
develop;

• To learn how real programs behave, so that we can design and build better
compilers.

GHC is now over 20 years old, and has been under continuous active devel-
opment since its inception. Today, GHC releases are downloaded by hundreds
of thousands of people, the online repository of Haskell libraries has over 3,000
packages, GHC is used to teach Haskell in many undergraduate courses, and
there are a growing number of instances of Haskell being depended upon com-
mercially.

Over its lifetime GHC has generally had around two or three active develop-
ers, although the number of people who have contributed some code to GHC is
in the hundreds. While the ultimate goal for us, the main developers of GHC,
is to produce research rather than code, we consider developing GHC to be an
essential prerequisite: the artifacts of research are fed back into GHC, so that
GHC can then be used as the basis for further research that builds on these
previous ideas. Moreover, it is important that GHC is an industrial-strength
product, since this gives greater credence to research results produced with it.

∗http://www.aosabook.org/en/index.html

1

http://www.aosabook.org/en/index.html

So while GHC is stuffed full of cutting-edge research ideas, a great deal of effort
is put into ensuring that it can be relied on for production use. There has often
been some tension between these two seemingly contradictory goals, but by and
large we have found a path that is satisfactory both from the research and the
production-use angles.

In this chapter we want to give an overview of the architecture of GHC,
and focus on a handful of the key ideas that have been successful in GHC (and
a few that haven’t). Hopefully throughout the following pages you will gain
some insight into how we managed to keep a large software project active for
over 20 years without it collapsing under its own weight, with what is generally
considered to be a very small development team.

1.1 What is Haskell?

Haskell is a functional programming language, defined by a document known as
the “Haskell Report” of which the latest revision is Haskell 2010 (Marlow (ed.)
2010). Haskell was created in 1990 by several members of the academic research
community interested in functional languages, to address the lack of a common
language that could be used as a focus for their research.

Two features of Haskell stand out amongst the programming languages
crowd:

• It is purely functional. That is, functions cannot have side effects or mutate
data; for a given set of inputs (arguments) a function always gives the
same result. The benefits of this model for reasoning about code (and,
we believe, writing code) are clear, but integrating input/output into the
purely functional setting proved to be a significant challenge. Fortunately
an elegant solution in the form of monads was discovered, which not only
allowed input/output to be neatly integrated with purely-functional code,
but introduced a powerful new abstraction that revolutionised coding in
Haskell (and subsequently had an impact on other languages too).

• It is lazy. This refers to the evaluation strategy of the language: most
languages use strict evaluation in which the arguments to a function are
evaluated before the function is called, whereas in Haskell the arguments
to a function are passed unevaluated, and only evaluated on demand. This
aspect of Haskell also has benefits for reasoning about programs, but more
than anything else serves as a barrier to prevent the leakage of impure non-
functional features into the language: such features fundamentally cannot
work in conjunction with lazy semantics.

Haskell is also strongly typed, while supporting type inference which means
that type annotations are rarely necessary.

Those interested in a complete history of Haskell should read “A history of
Haskell: being lazy with class” (Hudak et al. 2007).

2

2 High-level structure

At the highest level, GHC can be divided into three distinct chunks:

• The compiler itself. This is essentially a Haskell program whose job is to
convert Haskell source code into executable machine code.

• The Boot Libraries. GHC comes with a set of libraries that we call the
boot libraries, because they constitute the libraries that the compiler it-
self depends on. Having these libraries in the source tree means that
GHC can bootstrap itself. Some of these libraries are very tightly coupled
to GHC, because they implement low-level functionality such as the Int

type in terms of primitives defined by the compiler and runtime system.
Other libraries are more high-level and compiler-independent, such as the
Data.Map library.

• The Runtime System (hereafter referred to as the RTS). This is a large
library of C code that handles all the tasks associated with running the
compiled Haskell code, including garbage collection, thread scheduling,
profiling, exception handling and so on. The RTS is linked into every
compiled Haskell program. The RTS represents a significant chunk of the
development effort put into GHC, and the design decisions made there
are responsible for some of Haskell’s key strengths, such as its efficient
support for concurrency and parallelism. We’ll describe the RTS in more
detail in Section 5.

In fact, these three divisions correspond exactly to three subdirectories of a
GHC source tree: compiler, libraries, and rts respectively.

We won’t spend much time here discussing the boot libraries, as they are
largely uninteresting from an architecture standpoint. All the key design deci-
sions are embodied in the compiler and runtime system, so we will devote the
rest of this chapter to discussing these two components.

2.1 Code metrics

The last time we measured the number of lines in GHC was in 19921, so it is
interesting to look at how things have changed since then. Figure 1 gives a
breakdown of the number of lines of code in GHC divided up into the major
components, comparing the current tallies with those from 1992.

There are some notable aspects of these figures:

• Despite nearly 20 years of non-stop development the compiler has only
increased in size by a factor of 5, from around 28,000 to around 140,000
lines of Haskell code. We obsessively refactor while adding new code,
keeping the code base as fresh as possible.

1“The Glasgow Haskell compiler: a technical overview”, JFIT technical conference digest,
1992

3

• There are several new components, although these only account for about
28,000 new lines. Much of the new components are concerned with code
generation: native code generators for various processors, and an LLVM2

code generator. The infrastructure for the interactive interpreter GHCi
also added over 7,000 lines.

• The biggest increase in a single component is the type checker, where over
20,000 lines were added. This is unsurprising given that much of the recent
research using GHC has been into new type system extensions (for example
GADTs(Peyton Jones et al. 2006) and Type Families(Chakravarty et al.
2005)).

• A lot of code has been added to the Main component: this is partly because
there was previously a 3000-line Perl script called the “driver” that was
rewritten in Haskell and moved into GHC proper, and also because support
for compiling multiple modules was added.

• The runtime system has barely grown: it is only 10% larger, despite having
accumulated a lot of new functionality and being ported to more platforms.
We rewrote it completely around 1997.

• GHC has a complex build system, which today comprises about 6,000
lines of GNU make code. It is on its fourth complete rewrite, the latest
being about two years ago, and each successive iteration has reduced the
amount of code.

2.2 The compiler

We can divide the compiler into three:

• The compilation manager, which is responsible for the compilation of mul-
tiple Haskell source files. The job of the compilation manager is to figure
out in which order to compile the different files, and to decide which mod-
ules do not need to be recompiled because none of their dependencies have
changed since the last time they were compiled.

• The Haskell compiler (we abbreviate this as Hsc inside GHC), which han-
dles the compilation of a single Haskell source file. As you might imagine,
most of the action happens in here. The output of Hsc depends on what
backend is selected: assembly, LLVM code, or bytecode.

• The pipeline, which is responsible for composing together any necessary
external programs with Hsc to compile a Haskell source file to object
code. For example, a Haskell source file may need preprocessing with the
C preprocessor before feeding to Hsc, and the output of Hsc is usually an
assembly file that must be fed into the assembler to create an object file.

2formerly the “Low Level Virtual Machine”, the LLVM project includes a generic code-
generator with targets for many different processors http://llvm.org/

4

http://llvm.org/

Module Lines (1992) Lines (2011) Increase
Compiler
Main 997 11,150 11.2
Parser 1,055 4,098 3.9
Renamer 2,828 4,630 1.6
Type checking 3,352 24,097 7.2
Desugaring 1,381 7,091 5.1
Core tranformations 1,631 9,480 5.8
STG transformations 814 840 1
Data-Parallel Haskell — 3,718 —
Code generation 2913 11,003 3.8
Native code generation — 14,138 —
LLVM code generation — 2,266 —
GHCi — 7,474 —
Haskell abstract syntax 2,546 3,700 1.5
Core language 1,075 4,798 4.5
STG language 517 693 1.3
C-- (was Abstract C) 1,416 7,591 5.4
Identifier representations 1,831 3,120 1.7
Type representations 1,628 3,808 2.3
Prelude definitions 3,111 2,692 0.9
Utilities 1,989 7,878 3.96
Profiling 191 367 1.92
Compiler Total 28,275 139,955 4.9

Runtime System
All C and C-- code 43,865 48,450 1.10

Figure 1: Lines of code in GHC, past and present

5

The compiler is not simply an executable that performs these functions; it
is itself a library with a large API that can be used to build other tools that
work with Haskell source code, such as IDEs and analysis tools. More about
this later in Section 4.3.

2.3 Compiling Haskell code

As with most compilers, compiling a Haskell source file proceeds in a sequence
of phases, with the output of each phase becoming the input of the subsequent
phase. The overall structure of the different phases is illustrated in Figure 2.

2.3.1 Parsing

We start in the traditional way with parsing, which takes as input a Haskell
source file and produces as output abstract syntax. In GHC the abstract syntax
datatype HsSyn is parameterised by the types of the identifiers it contains, so
an abstract syntax tree has type HsSyn\,t for some type of identifiers t. This
enables us to add more information to identifiers as the program passes through
the various stages of the compiler, while reusing the same type of abstract syntax
trees.

The output of the parser is an abstract syntax tree in which the identifiers
are simple strings, which we call RdrName. Hence, the abstract syntax produced
by the parser has type HsSyn RdrName.

GHC uses the tools Alex and Happy to generate its lexical analysis and
parsing code respectively, which are analogous to the tools lex and yacc for C.

GHC’s parser is purely functional. In fact, the API of the GHC library
provides a pure function called parser that takes a String (and a few other
things) and returns either the parsed abstract syntax or an error message.

2.3.2 Renaming

Renaming is the process of resolving all of the identifiers in the Haskell source
code into fully qualified names, at the same time identifying any out-of-scope
identifiers and flagging errors appropriately.

In Haskell it is possible for a module to re-export an identifier that it im-
ported from another module. For example, suppose module A defines a function
called f, and module B imports module A and re-exports f. Now, if a module C

imports module B, it can refer to f by the name B.f—even though f is originally
defined in module A. This is a useful form of namespace manipulation; it means
that a library can use whatever module structure it likes internally, but expose
a nice clean API via a few interface modules that re-export identifiers from the
internal modules.

The compiler however has to resolve all this, so that it knows what each
name in the source code corresponds to. We make a clean distinction between
the entities, the “things themselves” (in our example, A.f), and the names by
which the entities can be referred to (e.g. B.f). At any given point in the

6

Figure 2: The compiler phases

7

source code, there are a set of entities in scope, and each may be known by
one or more different names. The job of the renamer is to replace each of the
names in the compiler’s internal representation of the code by a reference to a
particular entity. Sometimes a name can refer to several different entities: by
itself that is not an error, but if the name is actually used, then the renamer
will flag an ambiguity error and reject the program.

Renaming takes Haskell abstract syntax (HsSyn RdrName) as input, and also
produces abstract syntax as output (HsSyn Name). Here a Name is a reference
to a particular entity.

Resolving names is the main job of the renamer, but it performs a plethora
of other tasks too: collecting the equations of a function together and flagging
an error if they have differing numbers of arguments; rearranging infix expres-
sions according to the fixity of the operators; spotting duplicate declarations;
generating warnings for unused identifiers, and so on.

2.3.3 Type Checking

Type checking, as one might imagine, is the process of checking that the Haskell
program is type-correct. If the program passes the type checker, then it is
guaranteed to not crash at runtime.3

The input to the type checker is HsSyn Name (Haskell source with qualified
names), and the output is HsSyn Id. An Id is a Name with extra information:
notably a type. In fact, the Haskell syntax produced by the type checker is
fully decorated with type information: every identifier has its type attached,
and there is enough information to reconstruct the type of any subexpression
(which might be useful for an IDE, for example).

In practice, type checking and renaming may be interleaved, because the
Template Haskell feature generates code at runtime that itself needs to be re-
named and typechecked.

2.3.4 Desugaring, and the Core language

Haskell is a rather large language, containing many different syntactic forms. It
is intended to be easy for humans to read and write—there is a wide range of
syntactic constructs which gives the programmer plenty of flexibility in choosing
the most appropriate construct for the situation at hand. However, this flexibil-
ity means that there are often several ways to write the same code; for example,
an if expression is identical in meaning to a case expression with True and
False branches, and list-comprehension notation can be translated into calls to
map, filter, and concat. In fact, the definition of the Haskell language defines
all these constructs by their translation into simpler constructs; the constructs
that can be translated away like this are called “syntactic sugar”.

3The term “crash” here has a formal definition that includes hard crashes like “segmen-
tation fault”, but not things like pattern-matching failure. The non-crash guarantee can be
subverted by using certain unsafe language features, such as the Foreign Function Interface.

8

It is much simpler for the compiler if all the syntactic sugar is removed,
because the subsequent optimisation passes that need to work with the Haskell
program have a smaller language to deal with. The process of desugaring there-
fore removes all the syntactic sugar, translating the full Haskell syntax into a
much smaller language that we call Core. We’ll talk about Core in detail in
Section 3.1.

2.3.5 Optimisation

Now that the program is in Core, the process of optimisation begins. One of
GHC’s great strengths is in optimising away layers of abstraction, and all of
this work happens at the Core level. Core is a tiny functional language, but
it is a tremendously flexible medium for expressing optimisations, ranging from
the very high-level, such as strictness analysis, to the very low-level, such as
strength reduction.

Each of the optimisation passes takes Core and produces Core. The main
pass here is called the Simplifier, whose job it is to perform a large collection
of correctness-preserving transformations, with the goal of producing a more
efficient program. Some of these transformations are simple and obvious, such
as eliminating dead code or reducing a case expression when the value being
scrutinised is known, and some are more involved, such as function inlining and
applying rewrite rules (Section 4.1).

The simplifier is normally run between the other optimisation passes, of
which there are about six; which passes are actually run and in which order
depends on the optimisation level selected by the user.

2.3.6 Code Generation

Once the Core program has been optimised, the process of code generation
begins. After a couple of administrative passes, the code takes one of two routes:
either it is turned into byte code for execution by the interactive interpreter, or
it is passed to the code generator for eventual translation to machine code.

The code generator first converts the Core into a language called STG, which
is essentially just Core annotated with more information required by the code
generator. Then, STG is translated to Cmm, a low-level imperative language with
an explicit stack. From here, the code takes one of three routes:

• Native code generation: GHC contains simple native code generators
for a few processor architectures. This route is fast, and generates reason-
able code in most cases.

• LLVM code generation: The Cmm is converted to LLVM code and
passed to the LLVM compiler. This route can produce significantly better
code in some cases, although it takes longer than the native code genera-
tor.

9

Expressions
t, e, u ::= x Variables

| K Data constructors
| k Literals
| λx:σ.e | e u Value abstraction and application
| Λa:η.e | e φ Type abstraction and application
| let x : τ = e in u Local bindings
| case e of p→ u Case expressions
| e . γ Casts
| bγc Coercions

p ::= K c:η x:τ Patterns

Figure 3: The syntax of Core

• C code generation: GHC can produce ordinary C code. This route
produces signficantly slower code than the other two routes, but can be
useful for porting GHC to new platforms.

3 Key design choices

In this section we focus on a handful of the design choices that have been
particularly effective in GHC.

3.1 The intermediate language

A typical structure for a compiler for a statically-typed language is this: the pro-
gram is type checked, and transformed to some untyped intermediate language,
before being optimised. GHC is different: it has a statically-typed intermediate
language. As it turns out, this design choice has had a pervasive effect on the
design and development of GHC.

GHC’s intermediate language is called Core (when thinking of the imple-
mentation) or System FC (when thinking about the theory). Its syntax is given
in Figure 3.1. The exact details are not important here; the interested reader
can consult Sulzmann et al. (2007) for more details. For our present purposes,
however, the following points are the key ones:

• Haskell is a very large source language. The data type representing its
syntax tree has literally hundreds of constructors.

In contrast Core is a tiny, principled, lambda calculus. It has extremely
few syntactic forms, yet we can translate all of Haskell into Core.

• Haskell is an implicitly-typed source language. A program may have few
or no type annotations; instead it is up to the type inference algorithm to

10

figure out the type of every binder and sub-expressions. This type infer-
ence algorithm is complex, and occasionally somewhat ad hoc, reflecting
the design compromises that every real programming language embodies.

In contrast Core is an explicitly-typed language. Every binder has an ex-
plicit type, and terms include explicit type abstractions and applications.
Core enjoys a very simple, fast type checking algorithm, that checks that
the program is type correct. The algorithm is entirely straightforward;
there are no ad hoc compromises.

All of GHC’s analysis and optimisation passes work on Core. This is great:
because Core is such a tiny language an optimisation has only a few cases to
deal with. Although Core is small, it is extremely expressive—System F was,
after all, originally developed as a foundational calculus for typed computation.
When new language features are added to the source language (and that happens
all the time) the changes are usually restricted to the front end; Core stays
unchanged, and hence so does most of the compiler.

But why is Core typed? After all, if the type inference engine accepts the
source program, that program is presumably well typed, and each optimisation
pass presumably maintains that type-correctness. Core may enjoy a fast type
checking algorithm, but why would you ever want to run it? Moreover, making
Core typed carries significant costs, because every transformation or optimisa-
tion pass must produce a well-typed program, and generating all those type
annotations is often non-trivial.

Nevertheless, it has been a huge win to have an explicitly-typed intermediate
language, for several reasons:

• Running the Core type checker (we call it CoreLint) is a very powerful
consistency check on the compiler itself. Imagine that you write an “op-
timisation” that accidentally generates code that treats an integer value
as a function, and tries to call it. The chances are that the program will
segmentation fault, or fail at runtime in a bizarre way. Tracing a seg-fault
back to the particular optimisation pass that broke the program is a long
road.

Now imagine instead that we run CoreLint after every optimisation pass
(and we do, if you use the flag -dcore-lint): it will report a precisely
located error immediately after the offending optimsiation. What a bless-
ing.

Of course, type soundness is not the same as correctness: CoreLint will
not signal an error if you “optimise” (x ∗ 1) to 1 instead of to x. But if
the program passes CoreLint, it will guarantee to run without seg-faults;
and moreover in practice we have found that it is surprisingly hard to
accidentally write optimisations that are type-correct but not semantically
correct.

• The type inference algorithm for Haskell is very large and very complex: a
glance at Figure 1 confirms that the type checker is by far the largest single

11

component of GHC. Large and complex means error-prone. But CoreLint
serves as an 100% independent check on the type inference engine; if the
type inference engine accepts a program that is not, in fact, type-correct,
CoreLint will reject it. So CoreLint serves as a powerful auditor of the
type inference engine.

• The existence of Core has also proved to be a tremendous sanity check
on the design of the source language. Our users constantly suggest new
features that they would like in the language. Sometimes these features
are manifestly “syntactic sugar”, convenient new syntax for something you
can do already. But sometimes they are deeper, and it can be hard to tell
how far-reaching the feature is.

Core gives us a precise way to evaluate such features. If the feature can
readily be translated into Core, that reassures us that nothing fundamen-
tally new is going on: the new feature is syntactic-sugar-like. On the other
hand, if it would require an extension to Core, then we think much, much
more carefully.

In practice Core has been incredibly stable: over a 20-year time period
we have added exactly one new major feature to Core (namely coercions and
their associated casts). Over the same period, the source language has evolved
enormously. We attribute this stability not to our own brilliance, but rather to
the fact that Core is based directly on foundational mathematics: bravo Girard!

3.2 Type Checking the Source Language

One interesting design decision is whether type checking should be done before
or after desugaring. The trade-offs are these:

• Type checking before desugaring means that the type checker must deal
directly with Haskell’s very large syntax, so the type checker has many
cases to consider. If we desugared into (an untyped variant of) Core first,
one might hope that the type checker would become much smaller.

• On the other hand, type checking after desugaring would impose a signif-
icant new obligation: that desugaring does not affect which programs are
type-correct. After all, desugaring implies a deliberate loss of information.
It is probably the case that in 95% of the cases there is no problem, but
any problem here would force some compromise in the design of Core to
preserve some extra information.

• Most seriously of all, type checking a desugared program would make it
much harder to report errors that relate to the original program text, and
not to its (sometimes elaborate) desugared version.

Most compilers type check after desugaring, but for GHC we made the opposite
choice: we type check the full original Haskell syntax, and then desugar the
result. It sounds as if adding a new syntactic construct might be complicated,

12

but (following the French school) we have structured the type inference engine
in a way that makes it easy. Type inference is split into two parts:

1. Constraint generation: walk over the source syntax tree, generating a
collection of type constraints. This step deals with the full syntax of
Haskell, but it is very straightforward code, and it is easy to add new
cases.

2. Constraint solving: solve the gathered constraints. This is where the
subtlety of the type inference engine lies, but it is independent of the
source language syntax, and would be the same for a much smaller or
much larger language.

On the whole, the type-check-before-desugar design choice has turned out to be
a big win. Yes, it adds lines of code to the type checker, but they are simple
lines. It avoids giving two conflicting roles to the same data type, and makes
the type inference engine less complex, and easier to modify. Moreover, GHC’s
type error messages are pretty good.

3.3 No Symbol Table

Compilers usually have one or more data structures known as symbol tables,
which are mappings from symbols (e.g., variables) to some information about
the variable, such as its type, or where in the source code it was defined.

In GHC we use symbol tables quite sparingly; mainly in the renamer and
type checker. As far as possible, we use an alternative strategy: a variable
is a data structure that contains all the information about itself. Indeed, a
large amount of information is reachable by traversing the data structure of a
variable: from a variable we can see its type, which contains type constructors,
which contain their data constructors, which themselves contain types, and so
on. For example, here are some data types from GHC (heavily abbreviated and
simplified):

data Id = MkId Name Type

data Type = TyConApp TyCon [Type]

|

data TyCon = AlgTyCon Name [DataCon]

| ...

data DataCon = MkDataCon Name Type ...

An Id contains its Type. A Type might be an application of a type constructor
to some arguments (e.g., Maybe Int), in which case it contains the TyCon. A
TyCon can be an algebraic data type, in which case it includes a lits of its data
constructors. Each DataCon includes its Type, which of course mentions the
TyCon. And so on. The whole structure is highly interconnected. Indeed it
is cyclic; for example, a TyCon may contain a DataCon which contains a Type,
which contains the very TyCon we started with.

This approach has some advantages and disadvantages:

13

• Many queries that would require a lookup in a symbol table are reduced
to a simple field access, which is great for efficiency and code clarity.

• There is no need to carry around extra symbol tables, the abstract syntax
tree already contains all the information.

• The space overheads are better: all instances of the same variable share
the same data structure, and there is no space needed for the table.

• The only difficulties arise when we need to change any of the information
associated with a variable. This is where a symbol table has the advantage:
we would just change the entry in the symbol table. In GHC we have to
traverse the abstract syntax tree and replace all the instances of the old
variable with the new one; indeed the simplifier does this regularly, as
it needs to update certain optimisation-related information about each
variable.

It is hard to know whether it would be better or worse overall to use symbol
tables, because this aspect of the design is so fundamental that it is almost
impossible to change. Still, avoiding symbol tables is a natural choice in the
purely functional setting, so it seems likely that this approach is a good choice
for Haskell.

3.4 Inter-module optimisation

Functional languages encourage the programmer to write small definitions. For
example, here is the definition of && from the standard library:

(&&) :: Bool -> Bool -> Bool

True && True = True

_ && _ = False

If every use of such a function really required a function call, efficiency would be
terrible. One solution is to make the compiler treat certain functions specially;
another is to use a pre-processor to replace a “call” with the desired inline code.
All of these solutions are unsatisfactory in one way or another, especially as
another solution is so obvious: simply inline the function. To “inline a function”
means to replace the call by a copy of the function body, suitably instantiating
its parameters.

In GHC we have systematically adopted this approach (Peyton Jones and
Marlow 2002). Virtually nothing is built into the compiler. Instead, we define
as much as possible in libraries, and use aggressive inlining to eliminate the
overheads. This means that programmers can define their own libraries that
will be inlined and optimised as well as the ones that come with GHC.

A consequence is that GHC must be able to do cross-module, and indeed
cross-package, inlining. The idea is simple:

14

• When compiling a Haskell module Lib.hs, GHC produces object code
in Lib.o and an “interface file” in Lib.hi. This interface file contains
information about all the functions that Lib exports, including both their
types and, for sufficiently small functions, their definitions.

• When compiling a module Client.hs that imports Lib, GHC reads the
interface Lib.hi. So if Client calls a function Lib.f defined in Lib, GHC
can use the information in Lib.hi to inline Lib.f.

By default GHC will expose the definition of a function in the interface file only
if the function is “small” (there are flags to control this size threshold). But
we also support an INLINE pragma, to instruct GHC to inline the definition
agreessively at call sites, regardless of size, thus:

foo :: Int -> Int

{-# INLINE foo #-}

foo x = <some big expression>

Cross-module inlining is absolutely essential for defining super-efficient libraries,
but it does come with a cost. If the author upgrades his library, it is not enough
to re-link Client.o with the new Lib.o, because Client.o contains inlined
fragments of the old Lib.hs, and they may well not be compatible with the new
one. Another way to say this is that the ABI (Application Binary Interface) of
Lib.o has changed in a way that requires recompilation of its clients.

In fact, the only way for compilation to generate code with a fixed, pre-
dictable ABI is to disable cross-module optimisation, and this is typically too
high a price to pay for ABI compatibility. Users working with GHC will usually
have the source code to their entire stack available, so recompiling is not nor-
mally an issue (and, as we will describe later, the package system is designed
around this mode of working). However, there are situations where recompiling
is not practical: distributing bug fixes to libraries in a binary OS distribution,
for example. In the future we hope it may be possible to find a compromise
solution that allows retaining ABI compatibility while still allowing some cross-
module optimisation to take place.

4 Extensibility

It is often the case that a project lives or dies according to how extensible it is.
A monolithic piece of software that is not extensible has to do everything and
do it right, whereas an extensible piece of software can be a useful base even if
it doesn’t provide all the required functionality out of the box.

Open source projects are of course extensible by definition, in that any-
one can take the code and add their own features. But modifying the original
source code of a project maintained by someone else is not only a high-overhead
approach, it is also not conducive to sharing your extension with others. There-
fore successful projects tend to offer forms of extensibility that do not involve
modifying the core code, and GHC is no exception in this respect.

15

4.1 User-defined rewrite rules

The core of GHC is a long sequence of optimisation passes, each of which per-
forms some semantics-preserving transformation, Core into Core. But the au-
thor of a library defines functions that often have some non-trivial, domain-
specific transformations of their own, ones that cannot possibly be predicted by
GHC. So GHC allows library authors to define rewrite rules that are used to
rewrite the program during optimisation (Peyton Jones et al. 2001). In this way,
programmers can, in effect, extend GHC with domain-specific optimisations.

One example is the foldr/build rule, which is expressed like this:

{-# RULES "fold/build"

forall k z (g::forall b. (a->b->b) -> b -> b) .

foldr k z (build g) = g k z

#-}

The entire rule is a pragma, introduced by “{-# RULES”. The rule says that
whenever GHC sees the expression (foldr k z (build g)) it should rewrite
it to (g k z). This transformation is semantics-preserving, but it takes a re-
search paper to argue that it is (Gill et al. 1993), so there is no chance of GHC
performing it automatically. Together with a handful of other rules, and some
INLINE pragmas, GHC is able to fuse together list-transforming functions. For
example, the two loops in (map f (map g xs)) are fused into one.

Although rewrite rules are simple and easy to use, they have proved to be a
very powerful extension mechanism. When we first introduced the feature into
GHC ten years ago we expected it to be an occasionally-useful facility. But in
practice it has turned out to be useful in very many libraries, whose efficiency
often depends crucially on rewrite rules. For example, GHC’s own base library
contains upward of 100 rules, while the popular vector library uses several
dozen.

4.2 Compiler plugins

One way in which a compiler can offer extensibility is to allow programmers to
write a pass that is inserted dirctly into the compiler’s pipeline. Such passes are
often called “plugins”. GHC supports plugins in the following way:

• The programmer writes a Core to Core pass, as an ordinary Haskell func-
tion in a module P.hs, say, and compiles it to object code.

• When compiling some module, the programmer uses the command-line
flag -plugin P. (Alternatively, he can give the flag in a pragma at the
start of the module.)

• GHC searches for P.o, dynamically links it into the running GHC binary,
and calls it at the appropriate point in the pipeline.

But what is “the appropriate point in the pipeline”? GHC does not know, and
so it allows the plugin to make that decision. As a result of this and other

16

matters, the API that the plugin must offer is a bit more complicated than a
single Core to Core function — but not much.

Plugins sometimes require, or produce, auxiliary plugin-specific data. For
example, a plugin might perform some analysis on the functions in the module
being compiled (M.hs, say), and might want to put that information in the inter-
face file M.hi, so that the plugin has access to that information when compiling
modules that import M. GHC offers an annotation mechanism to support this.

Plugins and annotations are relatively new to GHC. They have a higher
barrier to entry than rewrite rules, because the plugin is manipulating GHC’s
internal data structures, but of course they can do much more. It remains to
be seen how widely they will be used.

4.3 GHC as a Library: The GHC API

One of GHC’s original goals was to be a modular foundation that others could
build on. We wanted the code of GHC to be as transparent and well-documented
as possible, so that it could be used as the basis for research projects by others;
we imagined that people would want to make their own modifications to GHC to
add new experimental features or optimisations. Indeed, there have been some
examples of this: for example, there exists a version of GHC with a Lisp front-
end, and a version of GHC that generates Java code, both developed entirely
separately by individuals with little or no contact with the GHC team.

However, producing modified versions of GHC represents only a small subset
of the ways in which the code of GHC can be re-used. As the popularity of the
Haskell language has grown, there has been an increasing need for tools and
infrastructure that understand Haskell source code, and GHC of course contains
a lot of the functionality necessary for building these tools: a Haskell parser,
abstract syntax, type checker and so on.

With this in mind, we made a simple change to GHC: rather than building
GHC as a monolithic program, we build GHC as a library, that is then linked
with a small Main module to make the GHC executable itself, but also shipped
in library form so that users can call it from their own programs. At the same
time we built an API to expose GHC’s funcionality to clients. The API provides
enough functionality to implement the GHC batch compiler and the GHCi in-
teractive environment, but it also provides access to individual passes such as
the parser and type checker, and allows the data structures produced by these
passes to be inspected. This change has given rise to a wide range of tools built
using the GHC API, including:

• A documentation tool, Haddock4, which reads Haskell source code and
produces HTML documentation.

• New versions of the GHCi front end with additional features, e.g. ghci-
haskeline5 which was subsequently merged back into GHC.

4http://www.haskell.org/haddock/
5http://hackage.haskell.org/package/ghci-haskeline

17

http://www.haskell.org/haddock/
http://hackage.haskell.org/package/ghci-haskeline

• IDEs that offer advanced navigation of Haskell source code, e.g. Leksah6,

• hint7, a simpler API for on-the-fly evaluation of Haskell source code.

4.4 The Package System

The package system has been a key factor in the growth in use of the Haskell
language in recent years. Its main purpose is to enable Haskell programmers to
share code with each other, and as such it is an important aspect of extensibility:
the package system extends the shared codebase beyond GHC itself.

The package system embodies various pieces of infrastructure that together
make sharing code easy. With the package system as the enabler, the com-
munity has built a large body of shared code; rather than relying on libraries
from a single source, Haskell programmers draw on libraries developed by the
whole community. This model has worked well for other languages; CPAN for
Perl, for example, although Haskell being a predominantly compiled rather than
interpreted language presents a somewhat different set of challanges.

Basically, the package system lets a user manage libraries of Haskell code
written by other people, and use them in their own programs and libraries. In-
stalling a Haskell library is as simple as uttering a single command, for example:

$ cabal install zlib

downloads the code for the zlib package from http://hackage.haskell.org,
compiles it using GHC, installs the compiled code somewhere on your system
(e.g., in your home directory on a Unix system), and registers the installation
with GHC. Furthermore, if zlib depends on any other packages that are not yet
installed, those will also be downloaded, compiled and installed automatically
before zlib itself is compiled. It is a tremendously smooth way to work with
libraries of Haskell code shared by others.

The package system is made of four components, only the first of which is
strictly part of the GHC project:

• Tools for managing the package database, which is simply a repository for
information about the packages installed on your system. GHC reads the
package database when it starts up, so that it knows which packages are
available and where to find them.

• A library called Cabal (Common Architecture for Building Applications
and Libraries), which implements functionality for building, installing and
registering individual packages.

• A website at http://hackage.haskell.org which hosts packages written
and uploaded by users. The website automatically builds documentation
for the packages which can be browsed online. At the time of writing,

6http://hackage.haskell.org/package/leksah
7http://hackage.haskell.org/package/hint

18

http://hackage.haskell.org/package/leksah
http://hackage.haskell.org/package/hint

Hackage is hosting over 3,000 packages covering functionality including
database libraries, web frameworks, GUI toolkits, data structures, and
networking.

• The cabal tool which ties together the Hackage website and the Cabal

library: it downloads packages from Hackage, resolves dependencies, and
builds and installs packages in the right order. New packages can also be
uploaded to Hackage using cabal from the command line.

These components have been developed over several years by members of the
Haskell community and the GHC team, and together they make a system that
fits perfectly with the open source development model. There are no barriers
to sharing code or using code that others have shared (provided you respect the
relevant licenses, of course). You can be using a package that someone else has
written literally within seconds of finding it on Hackage.

Hackage has been so successful that the remaining problems it has are now
those of scale: users find it difficult to choose amongst the four different database
frameworks, for example. Ongoing developments are aimed at solving these
problems in ways that leverage the community. For example, allowing users to
comment and vote on packages will make it easier to find the best and most
popular packages, and collecting data on build success or failures from users
and reporting the results will help users avoid packages that are unmaintained
or have problems.

5 The Runtime System

The Runtime System is a library of mostly C code that is linked into every
Haskell program. It provides the support infrastructure needed for running the
compiled Haskell code, including the following main components:

• Memory management, including a parallel, generational, garbage collector;

• Thread management and scheduling;

• The primitive operations provided by GHC;

• A bytecode interpreter and dynamic linker for GHCi.

The rest of this section is divided into two: first we focus on a couple of the
aspects of the design of the RTS that we consider to have been successful and
instrumental in making it work so well, and secondly we talk about the coding
practices and infrastructure we have built in the RTS for coping with what is a
rather hostile programming environment.

5.1 Key design decisions

In this section we describe two of the design decisions in the RTS that we
consider to have been particularly successful.

19

5.1.1 The block layer

The garbage collector is built on top of a block layer that manages memory in
units of blocks, where a block is a multiple of 4 KB in size. The block layer has
a very simple API:

typedef struct bdescr_ {

void * start;

struct bdescr_ * link;

struct generation_ * gen; // generation

// .. various other fields

} bdescr;

bdescr * allocGroup (int n);

void freeGroup (bdescr *p);

bdescr * Bdescr (void *p); // a macro

This is the only API used by the garbage collector for allocating and deallo-
cating memory. Blocks of memory are allocated with allocGroup and freed with
freeGroup. Every block has a small structure associated with it called a block
descriptor (bdescr). The operation Bdescr(p) returns the block descriptor as-
sociated with an arbitrary address p; this is purely an address calculation based
on the value of p and compiles to a handful of arithmetic and bit-manipulation
instructions.

Blocks may be linked together into chains using the link field of the bdescr,
and this is the real power of the technique. The garbage collector needs to
manage several distinct areas of memory such as generations, and each of these
areas may need to grow or shrink over time. By representing memory areas
as linked lists of blocks, the GC is freed from the difficulties of fitting multiple
resizable memory areas into a flat address space.

The implementation of the block layer uses techniques that are well-known
from C’s malloc()/free() API: it maintains lists of free blocks of various sizes,
and coalesces free areas. The operations freeGroup() and allocGroup() are
carefully designed to be O(1).

One major advantage of this design is that it needs very little support from
the OS, and hence is great for portability. The block layer needs to allocate
memory in units of 1 MB, aligned to a 1 MB boundary. While none of the
common OSs provide this functionality directly, it is implementable without
much difficulty in terms of the facilities they do provide. The payoff is that
GHC has no dependence on the particular details of the address-space layout
used by the OS, and it coexists peacefully with other users of the address space,
such as shared libraries and operating system threads.

There is a small up-front complexity cost for the block layer, in terms of
managing chains of blocks rather than contiguous memory. However, we have
found that this cost is more than repaid in flexibility and portability; for exam-
ple, the block layer enabled a particularly simple algorithm for parallel GC to
be implemented (Marlow et al. 2008).

20

5.1.2 Lightweight threads and parallelism

We consider concurrency to be a vitally important programming abstraction,
particularly for building applications like web servers that need to interact with
large numbers of external agents simultaneously. If concurrency is an important
abstraction, then it should not be so expensive that programmers are forced to
avoid it, or build elaborate infrastructure to amortise its cost (e.g., thread pools).
We believe that concurrency should just work, and be cheap enough that you
don’t worry about forking threads for small tasks.

All operating systems provide threads that work perfectly well, the problem
is that they are far too expensive. Typical OSs struggle to handle thousands of
threads, whereas we want to manage threads by the million.

Green threads, otherwise known as lightweight threads or user-space threads,
are a well-known technique for avoiding the overhead of operating system threads.
The idea is that threads are managed by the program itself, or a library (in our
case, the RTS), rather than by the operating system. Managing threads in
user space should be cheaper, because fewer traps into the operating system are
required.

In the GHC RTS we take full advantage of this idea. A context switch only
occurs when the thread is at a safe point, where very little additional state needs
to be saved. Because we use accurate GC, the stack of the thread can be moved
and expanded or shrunk on demand. Contrast these with OS threads, where
every context switch must save the entire processor state, and where stacks are
immovable so a large chunk of address space has to be reserved up front for each
thread.

Green threads can be vastly more efficient than OS threads, so why would
anyone want to use OS threads? It comes down to three main problems:

• Blocking and foreign calls. A thread should be able to make a call to an
OS API or a foreign library that blocks, without blocking all the other
threads in the system.

• Parallelism. Threads should automatically run in parallel if there are
multiple processor cores on the system.

• Some external libraries (notably OpenGL and some GUI libraries) have
APIs that must be called from the same OS thread each time, because
they use thread-local state.

It turns out that all of these are difficult to arrange with green threads.
Nevertheless, we persevered with green threads in GHC and found solutions to
all three:

• When a Haskell thread makes a foreign call, another OS thread takes over
the execution of the remaining Haskell threads (Marlow et al. 2004). A
small pool of OS threads are maintained for this purpose, and new ones
are created on demand.

21

• GHC’s scheduler multiplexes many lightweight Haskell threads onto a
few heavyweight OS threads; it implements a transparent M:N threading
model. Typically N is chosen to be the same as the number of processor
cores in the machine, allowing real parallelism to take place but with-
out the overhead of having a full OS thread for each lightweight Haskell
thread.

In order to run Haskell code, an OS thread must hold a Capability8: a
data structure that holds the resources required to execute Haskell code,
such as the nursery (memory where new objects are created). Only one
OS thread may hold a given Capability at a time.

• We provide an API for creating a bound thread : a Haskell thread that is
tied to one specific OS thread, such that any foreign calls made by this
Haskell thread are guaranteed to be made by that OS thread.

So in the vast majority of cases, Haskell’s threads behave exactly like OS
threads: they can make blocking OS calls without affecting other threads, and
they run in parallel on a multicore machine. But they are orders of magnitude
more efficient, in terms of both time and space.

Having said that, the implementation does have one problem that users oc-
casionally run into, especially when running benchmarks. We mentioned above
that lightweight threads derive some of their efficiency by only context-switching
at “safe points”, points in the code that the compiler designates as safe, where
the internal state of the virtual machine (stack, heap, registers, etc.) is in a tidy
state and garbage collection could take place. In GHC, a safe point is whenever
memory is allocated, which in almost all Haskell programs happens regularly
enough that the program never executes more than a few tens of instructions
without hitting a safe point. However, it is possible in highly optimised code to
find loops that run for many iterations without allocating memory. This tends
to happen often in benchmarks (e.g., functions like factorial and Fibonacci). It
occurs less often in real code, although it does happen. The lack of safe points
prevents the scheduler from running, which can have detrimental effects. It is
possible to solve this problem, but not without impacting the performance of
these loops, and often people care about saving every cycle in their inner loops.
This may just be a compromise we have to live with.

6 Developing GHC

GHC is a single project with a twenty-year life span, and is still in a ferment of
innovation and development. For the most part our infrastructure and tooling
has been conventional. For example, we use a bug tracker (Trac), a wiki (also
Trac), and Git for revision control. (This revision-control mechanism evolved
from purely manual, then CVS, then Darcs, before finally moving to Git in

8We have also called it a “Haskell Execution Context”, but the code currently uses the
Capability terminology.

22

2010.) There are a few points that may be less universal, and we offer them
here.

6.1 Comments and notes

One of the most serious difficulties in a large, long-lived project is keeping
technical documentation up to date. We have no silver bullet, but we offer one
low-tech mechanism that has served us particularly well: Notes.

When writing code, there is often a moment when a careful programmer
will mentally say something like “This data type has an important invariant”.
She is faced with two choices, both unsatisfactory. She can add the invariant
as a comment, but that can make the data type declaration too long, so that it
is hard to see what the constructors are. Alternatively, she can document the
invariant elsewhere, and risk it going out of date. Over twenty years, everything
goes out of date!

Thus motivated, we developed the following very simple convention:

• Comments of any significant size are not interleaved with code, but instead
set off by themselves, with a heading in standard form, thus:

Note [Equality-constrained types]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The type forall ab. (a ~ [b]) => blah

is encoded like this:

ForAllTy (a:*) $ ForAllTy (b:*) $

FunTy (TyConApp (~) [a, [b]]) $

blah

• A the point where the comment is relevant, we add a short comment
referring to the Note:

data Type

= FunTy Type Type -- See Note [Equality-constrained types]

| ...

The comment highlights that something interesting is going on, and gives
a precise reference to the comment that explains. It sounds trivial, but
the precision is vastly better than our previous habit of saying “see the
comment above”, because it often was not clear which of the many com-
ments above was intended, and after a few years the comment was not
even above (it was below, or gone altogether).

Not only is it possible to go from the code that refers to the Note to the Note

itself, but the reverse is also possible, and that is often useful. Moreover, the
same Note may be referred to from multiple points in the code.

This simple, ASCII-only technique, with no automated support, has trans-
formed our lives: GHC has around 800 Notes, and the number grows daily.

23



6.2 How to keep on refactoring

The code of GHC is churning just as quickly as it was ten years ago, if not more
so. There is no doubt that the complexity of the system has increased manyfold
over that same time period; we saw measures of the amount of code in GHC
earlier. Yet, the system remains manageable. We attribute this to three main
factors:

• There’s no substitute for good software engineering. Modularity always
pays off: making the APIs between components as small as possible makes
the individual components more flexible because they have fewer interde-
pendencies. For example, GHC’s Core datatype being small reduces the
coupling between Core-to-Core passes, to the extent that they are almost
completely independent and can be run in arbitrary order.

• Developing in a strongly-typed language makes refactoring a breeze. When-
ever we need to change a data type, or change the number of arguments
or type of a function, the compiler immediately tells us what other places
in the code need to be fixed. Simply having an absolute guarantee that a
large class of errors have been statically ruled out saves a huge amount of
time, especially when refactoring. It is scary to imagine how many hand-
written test cases we would need to provide the same level of coverage
that the type system provides.

• When programming in a purely functional language, it is hard to introduce
accidental dependencies via state. If you decide that you suddenly need
access to a piece of state deep in an algorithm, in an imperative language
you might be tempted to just make the state globally visible rather than
explicitly pass it down to the place that needs it. This way eventually
leads to a tangle of invisible dependencies, and brittle code: code that
breaks easily when modified. Pure functional programming forces you to
make all the dependencies explicit, which exerts some negative pressure
on adding new dependencies, and fewer dependencies means greater mod-
ularity. Certainly when it is necessary to add a new dependency then
purity makes you write more code to express the dependency, but in our
view it is a worthwhile price to pay for the long-term health of the code
base.

As an added benefit, purely functional code is thread-safe by construction
and tends to be easier to parallelise.

6.3 Crime doesn’t pay

Looking back over the changes we’ve had to make to GHC as it has grown,
a common lesson emerges: being less than purely functional, whether for the
purposes of efficiency or convenience, tends to have negative consequences down
the road. We have a couple of great examples of this:

24



• GHC uses a few data structures that rely on mutation internally. One is
the FastString type, which uses a single global hash table; another is a
global NameCache that ensures all external names are assigned a unique
number. When we tried to parallelise GHC (that is, make GHC com-
pile multiple modules in parallel on a multicore processor), these data
structures based on mutation were the only sticking points. Had we not
resorted to mutation in these places, GHC would have been almost trivial
to parallelise.

In fact, although we did build a prototype parallel version of GHC, GHC
does not currently contain support for parallel compilation, but that is
largely because we have not yet invested the effort required to make these
mutable data structures thread-safe.

• GHC’s behaviour is governed to a large extent by command-line flags.
These command-line flags are by definition constant over a given run
of GHC, so in early versions of GHC we made the values of these flags
available as top-level constants. For example, there was a top-level value
opt_GlasgowExts of type Bool, that governed whether certain language
extensions should be enabled or not. Top-level constants are highly conve-
nient, because their values don’t have to be explicitly passed as arguments
to all the code that needs access to them.

Of course these options are not really constants, because they change
from run to run, and the definition of opt_GlasgowExts involves calling
unsafePerformIO because it hides a side effect. Nevertheless, this trick
is normally considered “safe enough” because the value is constant within
any given run; it doesn’t invalidate compiler optimisations, for example.

However, GHC was later extended from a single-module compiler to a
multi-module compiler. At this point the trick of using top-level constants
for flags broke, because the flags may have different values when compiling
different modules. So we had to refactor large amounts of code to pass
around the flags explicitly.

Perhaps you might argue that treating the flags as state in the first place,
as would be natural in an imperative language, would have sidestepped
the problem. To some extent this is true, although purely functional code
has a number of other benefits, not least of which is that representing
the flags by an immutable data structure means that the resulting code is
already thread-safe and will run in parallel without modification.

6.4 Developing the RTS

GHC’s runtime system presents a stark contrast to the compiler in many ways.
There is the obvious difference that the runtime system is written in C rather
than Haskell, but there are also considerations unique to the RTS that give rise
to a different design philosophy:

25



1. Every Haskell program spends a lot of time executing code in the RTS:
20–30% is typical, but characteristics of Haskell programs vary a lot and
so figures greater or less than this range are also common. Every cycle
saved by optimising the RTS is multiplied many times over, so it is worth
spending a lot of time and effort to save those cycles.

2. The runtime system is statically linked into every Haskell program9, so
there is an incentive to keep it small.

3. Bugs in the runtime system are often inscrutable to the user (e.g., “seg-
mentation fault”) and are hard to work around. For example, bugs in the
garbage collector tend not to be tied to the use of a particular language
feature, but arise when some complex combination of factors emerges at
runtime. Furthermore, bugs of this kind tend to be non-deterministic (only
occurring in some runs), and highly sensitive (tiny changes to the program
make the bug disappear). Bugs in the multithreaded version of the run-
time system present even greater challenges. It is therefore worth going
to extra lengths to prevent these bugs, and also to build infrastructure to
make identifying them easier.

The symptoms of an RTS bug are often indistinguishable from two other
kinds of failure: hardware failure, which is more common than you might
think, and misuse of unsafe Haskell features like the FFI (Foreign Function
Interface). The first job in diagnosing a runtime crash is to rule out these
two other causes.

4. The RTS is low-level code that runs on several different architectures and
operating systems, and is regularly ported to new ones. Portability is
important.

Every cycle and every byte is important, but correctness is even more so.
Moreover, the tasks performed by the runtime system are inherently complex,
so correctness is hard to begin with. Reconciling these has lead us to some
interesting defensive techniques, which we describe in the following sections.

6.4.1 Coping with complexity

The RTS is a complex and hostile programming environment. In contrast to
the compiler, the RTS has almost no type safety. In fact, it has even less type
safety than most other C programs, because it is managing data structures
whose types live at the Haskell level and not at the C level. For example, the
RTS has no idea that the object pointed to by the tail of a cons cell is either []
or another cons: this information is simply not present at the C level. Moreover,
the process of compiling Haskell code erases types, so even if we told the RTS
that the tail of a cons cell is a list, it would still have no information about the
pointer in the head of the cons cell. So the RTS code has to do a lot of casting

9That is, unless dynamic linking is being used.

26



of C pointer types, and it gets very little help in terms of type safety from the
C compiler.

So our first weapon in this battle is to avoid putting code in the RTS. Wher-
ever possible, we put the minimum amount of functionality into the RTS and
write the rest in a Haskell library. This has rarely turned out badly; Haskell
code is far more robust and concise than C, and performance is usually perfectly
acceptable. Deciding where to draw the line is not an exact science, although
in many cases it is reasonably clear. For example, while it might be theoret-
ically possible to implement the garbage collector in Haskell, in practice it is
extremely difficult because Haskell does not allow the programmer precise con-
trol of memory allocation, and so dropping down to C for this kind of low-level
task makes practical sense.

There is plenty of functionality that can’t be (easily) implemented in Haskell,
and writing code in the RTS is not pleasant. In the next section we focus on
one aspect of managing complexity and correctness in the RTS: maintaining
invariants.

6.5 Invariants, and checking them

The RTS is full of invariants. Many of them are trivial and easy to check: for
example, if the pointer to the head of a queue is NULL, then the pointer to the
tail should also be NULL. The code of the RTS is littered with assertions to check
these kinds of things. Assertions are our go-to tool for finding bugs before they
manifest; in fact, when a new invariant is added, we often add the assertion
before writing the code that implements the invariant.

Some of the invariants in the runtime are far more difficult to satisfy, and
to check. One invariant of this kind that pervades more of the RTS than any
other is the following: the heap has no dangling pointers.

Dangling pointers are easy to introduce, and there are many places both in
the compiler and the RTS itself that can violate this invariant. The code gener-
ator could generate code that creates invalid heap objects; the garbage collector
might forget to update the pointers of some object when it scans the heap.
Tracking down these kinds of bugs can be extremely time consuming10 because
by the time the program eventually crashes, execution might have progressed a
long way from where the dangling pointer was originally introduced. There are
good debugging tools available, but they tend not to be good at executing the
program in reverse.11

The general principle is: if a program is going to crash, it should crash as
soon, as noisily, and as often as possible.12

The problem is, the no-dangling-pointer invariant is not something that can
be checked with a constant-time assertion. The assertion that checks it must

10It is, however, one of the author’s favourite activities!
11Recent versions of GDB and the Microsoft Visual Studio debugger do have some support

for reverse execution, however.
12This quote comes from the GHC coding style guidelines, and was originally written by

Alastair Reid, who worked on an early version of the RTS.

27



do a full traversal of the heap! Clearly we cannot run this assertion after every
heap allocation, or every time the GC scans an object (indeed, this would not
even be enough, as dangling pointers don’t appear until the end of GC, when
memory is freed).

So, the debug RTS has an optional mode that we call sanity checking. Sanity
checking enables all kinds of expensive assertions, and can make the program
run many times more slowly. In particular, sanity checking runs a full scan
of the heap to check for dangling pointers (amongst other things), before and
after every GC. The first job when investigating a runtime crash is to run the
program with sanity checking turned on; sometimes this will catch the invariant
violation well before the program actually crashes.

7 Conclusion

GHC has consumed a significant portion of the authors’ lives over the last 20
years, and we are rather proud of how far it has come. It is not the only Haskell
implementation, but it is the only one in regular use by hundreds of thousands
of people to get real work done. We are constantly surprised when Haskell turns
up being used in unusual places; one recent example is Haskell being used to
control the systems in a garbage truck13.

For many, Haskell and GHC are synonymous: it was never intended to be
so, and indeed in many ways it is counterproductive to have just one implemen-
tation of a standard, but the fact is that maintaining a good implementation
of a programming language is a lot of work. We hope that our efforts in GHC,
to support the standard and to clearly delimit each separate language exten-
sion, will make it feasible for more implementations to emerge and to integrate
with the the package system and other infrastructure. Competition is good for
everyone!

We are deeply indebted to Microsoft in particular for giving us the oppor-
tunity to develop GHC as part of our research and to distribute it as open
source.

References

M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type synonyms. In
Proceedings of the tenth ACM SIGPLAN international conference on Func-
tional programming, ICFP ’05, pages 241–253, New York, NY, USA, 2005.
ACM.

A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation.
In ACM Conference on Functional Programming and Computer Architecture
(FPCA’93), pages 223–232, Cophenhagen, 1993. ACM Press.

13http://www.haskell.org/pipermail/haskell-cafe/2010-April/075647.html

28

http://www.haskell.org/pipermail/haskell-cafe/2010-April/075647.html


P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of haskell:
being lazy with class. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, HOPL III, pages 12–1–12–55, New
York, NY, USA, 2007. ACM.

S. Marlow, S. Peyton Jones, and W. Thaller. Extending the haskell foreign
function interface with concurrency. In Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 57–68, Snowbird, Utah, USA, September 2004.

S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Parallel generational-
copying garbage collection with a block-structured heap. In Proceedings of
the 7th international symposium on Memory management, ISMM ’08, pages
11–20. ACM, 2008.

S. Marlow (ed.). The Haskell 2010 report, 2010. http://www.haskell.

org/haskellwiki/Language_and_library_specification#The_Haskell_

2010_report.

S. Peyton Jones and S. Marlow. Secrets of the glasgow haskell compiler inliner.
J. Funct. Program., 12:393–434, July 2002. ISSN 0956-7968.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for gadts. In Proceedings of the eleventh ACM SIGPLAN
international conference on Functional programming, ICFP ’06, pages 50–61,
New York, NY, USA, 2006. ACM.

S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In R. Hinze, editor, 2001 Haskell
Workshop. ACM SIGPLAN, September 2001.

M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F
with type equality coercions. In ACM SIGPLAN International Workshop on
Types in Language Design and Implementation (TLDI’07). ACM, 2007.

29

http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report

	Introduction
	What is Haskell?

	High-level structure
	Code metrics
	The compiler
	Compiling Haskell code
	Parsing
	Renaming
	Type Checking
	Desugaring, and the Core language
	Optimisation
	Code Generation


	Key design choices
	The intermediate language
	Type Checking the Source Language
	No Symbol Table
	Inter-module optimisation

	Extensibility
	User-defined rewrite rules
	Compiler plugins
	GHC as a Library: The GHC API
	The Package System

	The Runtime System
	Key design decisions
	The block layer
	Lightweight threads and parallelism


	Developing GHC
	Comments and notes
	How to keep on refactoring
	Crime doesn't pay
	Developing the RTS
	Coping with complexity

	Invariants, and checking them

	Conclusion

